Link Search Menu Expand Document

The table below is a partial reference for SIFT functions. Not all functions are documented in this list.

     
  Function Name Description
     
GUI functions pop_pre_prepData generate GUI for data preprocessing
pop_est_fitMVAR generate GUI for VAR/AMVAR model fitting  
pop_est_selModelOrder generate GUI for VAR model order selection  
pop_est_validateMVAR generate GUI for VAR model validation  
pop_est_mvarConnectivity generate GUI for computing connectivity measures  
pop_vis_TimeFreqGrid generate GUI for Interactive Time-Frequency Grid  
pop_vis_causalBrainMovie3D generate GUI for Interactive Causal BrainMovie3D  
     
Preprocessing pre_detrend linearly detrend or center an ensemble of data
pre_diffData apply a difference filter to an ensemble of data  
pre_normData apply temporal or ensemble normalization to an ensemble of data  
pre_prepData preprocess an ensemble of data (calls other subfunctions)  
pre_selectComps select a set of independent components from the data  
     
Modeling est_calcInvCovMat compute inverse covariance matrix of a VAR process
est_calcInvCovMatFourier compute frequency-domain transformation of the inverse covariance matrix of a VAR process  
est_calcInvCovMatFourierPDC same as above, but a specific version used for analytic PDC significance thresholds  
est_checkMVARConsistency check the percent consistency of a fitted VAR model  
est_checkMVARParams perform a sanity check on a set of specified MVAR parameters – return recommendations on optimal parameters, if relevant.  
est_checkMVARStability check the stability/stationarity of fitted VAR model  
est_checkMVARWhiteness check the whiteness of the residuals of a fitted VAR model  
est_eigenmode return the eigenmodes of a VAR process (requires ARFIT package)  
est_fitMVAR fit a VAR[p] model to the data using one of several algorithms (Vieira-Morf, ARFIT, MLS, etc). Optionally can use a sliding window to perform segmentation-based adaptive MVAR analysis. Calls modified routines from Alois Schloegl’s open-source TSA package or from the ARFIT package.  
est_fitMVARKalman fit a VAR[p] model to continuous data using a Kalman filter. Adapts code from Alois Schloegl’s open-source TSA package  
est_MVARConnectivity compute spectral density, coherence, and connectivity measures from a fitted VAR model  
est_mvarResiduals return the residuals of a fitted VAR model  
est_mvtransfer compute frequency-domain quantities from a VAR model (spectrum, coherence, granger-causality, etc)  
est_selModelOrder evaluate and return model order selection criteria (AIC, SBC, FPE, HQ) for a range of model orders  
     
Statistics stat_bootSignificanceTests perform bootstrap significance tests on connectivity structure
stat_analyticSignificanceTests perform asymptotic analysis significance tests on connectivity structure  
stat_phaserand return a distribution satisfying the null hypothesis of no connectivity using a phase-randomization approach (Theiler, 1997)  
stat_bootstrap return a bootstrapped distribution of a spectral/connectivity estimator  
stat_prctileTest perform one- or two-sided percentile tests to compare an observed value with the quantiles of a (null) distribution.  
     
Visualization vis_TimeFreqGrid low-level function to create an interactive Time-Frequency Grid
vis_TimeFreqCell low-level function to render an expanded (detailed) version of a single cell of the Time-Frequency Grid  
vis_causalBrainMovie3D low-level function to generate a causal BrainMovie3D  
vis_causalProjection in development – low-level function to generate a Causal Projection image or movie  
     
Simulations sim_genVARModelFromEq generate an arsim()-compatible VAR specification from a text-based equation
     
Helpers hlp_* A large number of helper functions (to be documented later)