Link Search Menu Expand Document

How to cite EEGLAB

Primary EEGLAB citation

Delorme A & Makeig S (2004) EEGLAB: an open-source toolbox for analysis of single-trial EEG dynamics, Journal of Neuroscience Methods 134:9-21. PDF.

Includes details of EEGLAB ICA and time/frequency methods. Please cite this paper to reference EEGLAB in publications. Browse its 14,000+ citations in Google Scholar. Consult these papers, plus the extensive EEGLAB tutorial and help facilities, for instructions and examples of their use.

Third-party analysis of EEGLAB popularity

Mohammad Fayaz (2023) The bibliometric analysis of EEGLAB software in the Web of Science indexed articles, Neuroscience Informatics, Volume 4, Issue 1, ISSN 2772-5286, https://www.sciencedirect.com/science/article/pii/S2772528623000390. This article analyzes usage of EEGLAB compared to other EEG software packages, and shows it is still the most popular EEG software in 2023.

Hanke, M., & Halchenko, Y. O. (2011). Neuroscience Runs on GNU/Linux. Frontiers in neuroinformatics, 5, 8. https://doi.org/10.3389/fninf.2011.00008. This article (footnotes) shows that EEGLAB is the most popular EEG software.

EEGLAB ICA methods introductions

Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends in Cognitive Science 8:204-210. PDF.

Summarizes benefits and pitfalls of combining ICA, time/frequency analysis, and ERP-image visualization.

Delorme A, Palmer J, Oostenveld R, Onton J, Makeig S (2012) Independent EEG components are dipolar. PLOS One, 7(2). PDF.

Demonstrates that the more mutual information a linear transform removes from multi-channel EEG data, the more the resulting components are compatible with an origin in a small patch of locally synchronous cortex.

Delorme, A., Sejnowski, T., Makeig, S. Improved rejection of artifacts from EEG data using high-order
statistics and independent component analysis. Neuroimage. 2007; 34, 1443-1449. PDF.

This paper demonstrates the advantages of using ICA for rejecting EEG artifacts.

Onton J, Delorme, A., Makeig, S. Frontal midline EEG dynamics during working memory. NeuroImage. 2005;27, 341-356. PDF.

An early application of ICA to the study of time/frequency dynamics, showing the value of ICA spatial filtering for resolving brain sources, etc.

S. Makeig, A.J. Bell, T-P. Jung, and T.J. Sejnowski, Independent component analysis of electroencephalographic data, In: D. Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural Information Processing Systems 8:145-151, MIT Press, Cambridge, MA 1996. PDF.

The first paper demonstrating the benefits of applying ICA decomposition to EEG data.

EEGLAB time/frequency methods introductions

Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends in Cognitive Science 8:204-210. PDF.

Summarizes benefits and pitfalls of combining ICA, time/frequency analysis, and ERP-image visualization.

Makeig, S, Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones, Electroencephalogr clin Neurophysiol, 86:283-293, 1993. PDF.

The first paper demonstrating the event-related spectral perturbation (ERSP) measure.

Subset of EEGLAB plug-in references

Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S. (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. Computat Intelligence Neurosci 2011:130714, doi: 10.1155/2011/130714. HTML.

Pernet CR, Chauveauy N, Gaspar C, Rousselet GA (2011) LIMO EEG: A toolbox for hierarchical linear modeling of electroencephalographic data. Computat Intelligence Neurosci 2011:831409, doi: 10.1155/2011/831409. HTML.

Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 198:181-197, 2019. PDF.

Zeynep Akalin Acar & Scott Makeig, Neuroelectromagnetic Forward Head Modeling Toolbox J Neurosci Meth, doi:10.1016/jneumeth.2010.04.031. PDF.

Martinez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K., Sotero, R.C. Makeig, S. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage, 2018. PDF.