# MPOMPOWPOWPOWP

Cross-frequency power-power coupling analysis toolbox (PowPowCAT)

Makoto Miyakoshi

Advanced Topics in The 30<sup>th</sup> EEGLAB workshop Nov 30, 2021 11:00-11:45 pm

Artwork by Mayumi and Makoto Miyakoshi

#### What's the difference?



Frequency (Hz)

Frequency (Hz)

#### How about this?



Frequency (Hz)

Frequency (Hz)

#### What is harmonics?





Wikipedia 'square wave'

Wikipedia 'harmonics'

#### Virtual John Iversen's explanation



#### Double peaks does not guarantee cross-frequency coupling



#### Thammasan and Miyakoshi (2020)

### Why do I like power-power coupling?

#### List of cross-frequency relations 1



Jirsa and Müller (2013)

# List of cross-frequency relations 2



Jirsa and Müller (2013)

#### Reasons to analyze EEG power rather than phase

- Phase is a noisy metric, has weird dependency on amplitude contrary to the intuition, etc.
- Power metric has good biological evidence: population coding.
- 'PowPowCAT' is a good name which I must publish.

#### Why is harmonics important in EEG? 1



Power Spectral Density of averaged Steady-State Visual Evoked Potential (SSVEP) at Oz, O1, O2.



Regional cerebral blood flow (rCBF) measured with  $H_2^{15}O$  PET. Red, fundamental freq-weighted. Blue, first harmonics-weighted.

Pastor et al. (2006)

### Why is harmonics important in EEG? 2



Wikipedia 'lateral geniculate nucleus'

On- and off-neuron responses recorded from cat lateral geniculate nucleus (LGN) during visual stimulation.

Podvigin et al. (2004)

#### How to calculate power-power coupling

#### Comodulogram as spectral covariance

When X is the time-frequency decomposed power with length k,,



#### Demonstration of PowPowCAT

#### 'stern\_125.set' (tutorial dataset ) IC scalp topos



### 'stern\_125.set' Comodulogram



#### IC6 vs. IC8—What's the best description of the difference?



#### IC6 shows a nice second harmonics (r=0.356)





#### 4TH harmonics captured!





#### How a muscle IC is nicely represented



Thammasan and Miyakoshi (2020)

#### Comodulogram helps classify the ICs







#### Thammasan and Miyakoshi (2020)

### Comodulogram for IC classification



| (a) | Clusters | Our<br>Interpretation | Percentage of ICs in Each Class as Labeled by ICLabel |        |      |       |            |               |       | Total Number |
|-----|----------|-----------------------|-------------------------------------------------------|--------|------|-------|------------|---------------|-------|--------------|
|     |          |                       | Brain                                                 | Muscle | Eye  | Heart | Line Noise | Channel Noise | Other | of ICs       |
| (a) | 2        | Brain                 | 52.5                                                  | 23.0   | 1.8  | 0.0   | 13.5       | 0.0           | 9.2   | 282          |
|     | 3        | Brain                 | 23.2                                                  | 26.8   | 16.1 | 0.0   | 25.0       | 0.0           | 8.9   | 56           |
| mm  | 5        | Brain                 | 82.0                                                  | 8.7    | 0.0  | 0.0   | 8.7        | 0.0           | 0.7   | 150          |
|     | 6        | Muscle                | 10.4                                                  | 83.1   | 0.0  | 0.0   | 2.6        | 0.0           | 3.9   | 77           |
|     | 7        | Muscle                | 27.6                                                  | 51.5   | 2.2  | 0.0   | 5.2        | 0.0           | 13.4  | 134          |
|     | 8        | Muscle                | 3.3                                                   | 53.3   | 26.7 | 0.0   | 10.0       | 0.0           | 6.7   | 30           |
|     | 1        | Eye                   | 3.2                                                   | 0.0    | 83.9 | 0.0   | 6.5        | 0.0           | 6.5   | 31           |
|     | 4        | Noise                 | 16.7                                                  | 20.0   | 56.7 | 0.0   | 3.3        | 3.3           | 0.0   | 30           |
|     | Total    |                       | 42.5                                                  | 31.4   | 8.6  | 0.0   | 10.1       | 0.1           | 7.2   | 790          |

'The diagonal line of comodulogram is the power spectral density (PSD). When used in machine learning, comodulogram could be more informative than PSD.'



Luca Pion-Tonachini

### Conclusion

- Cross-frequency power-power coupling plot is called *comodulogram*.
- Comodulogram is an extension of power spectral density (PSD) which tells us temporal correlations across time series of power fluctuations in different frequency bands.
- Comodulogram provides additional information about the independent components (ICs) that has been neglected but now proven to classify them.
- PowPowCAT has been available since 2017 to calculate the comodulogram.
  - Recently batch mode is supported upon request of Pål from Oslo.

# Mini history of PowPowCAT



Nattapong Thammasan Visiting scholar at SCCN Jan-Mar 2017 • The prototype of PowPowCAT was developed as 're-inventing the wheel'.

in the final revision. PPC was ad hoc re-invented by MM to convince Michael that the 44-Hz peak in the PSD of his EEG data was not related to other brain signals.

- The original EEGLAB plugin was published on January 3, 2017.
- I continued to develop it *during* the 23<sup>rd</sup> EEGLAB workshop in January 2017 at Mysuru, India.
- Proposed to Nattapong from Osaka University as a 'souvenir project'.
  - E-mail discussion with György, Daniel, Dion, and Brendon.
  - First submitted in 2017 (rejected).
  - The second submission accepted in 2020.



MDP

Article

**Cross-Frequency Power-Power Coupling Analysis:** A Useful Cross-Frequency Measure to Classify ICA-Decomposed EEG

Nattapong Thammasan <sup>1</sup> and Makoto Miyakoshi <sup>2,\*</sup>

### Thank you for your attention



Artwork by Mayumi and Makoto Miyakoshi

A mini review of the power-power coupling analysis by Nattapong Thammasan (University of Twente)

#### Bekisz & Wróbel, 1999

Neuroreport

Cross-correlation between envelopes of <u>filtered</u> beta and gamma oscillatory signals

#### Jirsa & Müller, 2013

*Front. Comput. Neurosci.* Review paper Envelope-Envelope Coupling

*Neuroreport* Amplitude-envelope correlation (AEC) of <u>filtered</u> signals

Bruns et al., 2000

*Int. J. Psychophysiol* Correlation between corresponding envelope segments

Bruns & Eckhorn, 2004

#### LGN VCx1 0.10 0.10 0.05 0.05 0.00 0.00 -0.50.0 0.5 -0.5 0.0 0.5 -1.01.0 -1.01.0 VCx2 VCx3 Normali 0.10 0.10 B->Y Y→B 0.05 0.05 0.00 0.00 -0.5 0.0 0.5 1.0 -1.0-0.5 0.0 0.5 1.0 -10Time shift (s)

Bekisz & Wróbel, 1999

Cross-correlation function between envelopes of beta and gamma signals



#### Bruns & Eckhorn, 2004









#### envelope-to-envelope correlation

Pronounced task-related increase of gamma-delta envelope-to-signal correlation between superior and inferior occipital visual area  $\rightarrow$  possibly reflecting a short-term memory encoding process

Jirsa & Müller, 2013



Strongest in 5-14 Hz, Coupling in EC > in EO

- Bruns & Eckhorn, Int. J. Psychophysiol, 2004
  - correlation between corresponding envelope segments was determined after subtracting the segments' means and correlation values were normalized to segment energies:

 $FZT(\rho) = \tanh^{-1}(\rho)$ :

$$\rho_{XY,k}(t,f) = \frac{\sum_{\tau \in I_t} a'_{X,k}(\tau,f) \cdot a'_{Y,k}(\tau,f)}{\sqrt{E'_{X,k}(t,f) \cdot E'_{Y,k}(t,f)}},$$

where  $a'_{X,k}(\tau,f) = a_{X,k}(\tau,f) - \overline{a_{X,k}}(t,f)$   $(\tau \in I_t)$ denotes an envelope segment with its mean subtracted, and  $E'_{X,k}(t,f) = \sum_{\tau \in I_t} a'^2_{X,k}(\tau,f)$  is the energy of that segment. Finally, correlation values were averaged across trials, using Fisher's Z transform

$$\rho_{XY}(t,f) = FZT^{-1} \left( \frac{1}{N} \sum_{k=1}^{N} FZT(\rho_{XY,k}(t,f)) \right).$$
(8)



envelope-to-envelope correlation